
COMPARISON OF HIGH-PERFORMANCE GRAPH COLORING ALGORITHMS

Lukas Gnama, Paul Manstettena, Siegfried Selberherrb, Josef Weinbuba

aChristian Doppler Laboratory for High Performance TCAD at the
bE360 - Institute for Microelectronics

INTRODUCTION

The advent of modern many- and multi-core architectures offers the option of utilizing parallel com-
puting to reduce the overall runtime of applications. An attractive option is to decompose a com-
putational task into independent sets, which enables independent parallel processing, i.e., without
computational dependencies which potentially limit parallel performance. Such techniques are typi-
cally used in, e.g., linear algebra [1], mesh adaptation [2], and community detection [3].
A prominent approach to identify independent sets is to use graph coloring algorithms, in particular
so-called distance-1 algorithms [3], which color a graph G(N,E) such that no two neighboring nodes
have the same color. Subsequently, the nodes of each color represent an independent set. One draw-
back of most of these algorithms is the resulting skewness in the population of the independent sets,
yielding possibly insufficient workload for the actual parallel processing steps which follow the graph
coloring. In this work we compare the results of recently developed parallel distance-1 graph color-
ing algorithms against well known serial algorithms with respect to the number of colors, population
sizes, and performance.

COLORING ALGORITHMS

The Greedy algorithm [3, 4] assigns each graph node the smallest permissible color by checking
the already assigned colors of the neighboring nodes. An adoption of the Greedy algorithm, the
Greedy-LU algorithm, alleviates the resulting skewness of the distribution of the color populations,
by assigning the least used color to the active graph node [3]. In addition to the two serial algo-
rithms, we investigate two shared-memory parallel algorithms: (a) The Iterative Parallel algorithm of
Çatalyürek et al. [4], which conducts a parallel initial coloring with a subsequent color conflict detec-
tion and resolvement step resulting in an unbalanced coloring. (b) The Scheduled Reverse algorithm of
Lu et al. [3], which generates a balanced coloring using a parallel recoloring approach after an initial
Greedy coloring.

RESULTS AND DISCUSSION

As first test graph we use a graph representing a tetrahedral mesh of a three-dimensional tri-gate tran-
sistor (Trigate) with 177 093 nodes, a maximum number of node degree of 50, and an average node
degree of 27.31. The second graph is from the University of Florida Sparse Matrix Collection [5],
representing the internet topology (Internet) obtained from daily traceroutes in 2005 with 1 696 415
nodes, and a maximum and average degree of 23 633 and 8.72, respectively. All benchmarks were
performed on a single node of the Vienna Scientific Cluster 3 [6].
In Figure 1 we depict the resulting color populations for the two investigated graphs. As expected, the
Greedy-LU algorithm produces the best balancing in both cases, but uses the highest number of colors.
For the Internet graph it requires about 6 times more colors than the unbalanced Greedy algorithm.
The Iterative Parallel algorithm produces similar color populations as the Greedy algorithm. The
Scheduled Reverse algorithm manages to alleviate the skewness resulting from the initial Greedy



coloring, but for the Internet graph it results in high population differences for higher color classes.
In Table 1 we compare the execution times of all investigated algorithms. Our investigation shows that
the Scheduled Reverse algorithm balances an initial Greedy coloring, but at the cost of being nearly
two times slower for the Internet graph compared to the fastest algorithm (i.e., Greedy). Additionally,
we show that the Iterative Parallel algorithm achieves a speedup of almost 5 for Trigate and about 11
for the Internet graph. The Scheduled Reverse algorithm performs worse in terms of speedup, mostly
because it is based on an initial coloring, and an additional serial preparation step, before the actual
parallel recoloring can be conducted.

Trigate Internet

Figure 1: Color population of the two test graphs using 16 threads (16T) for the parallel algorithms.

Graph Greedy Greedy-LU It.Par. 1T It.Par. 16T Sched.Rev. 1T Sched.Rev. 16T
Trigate 0.033 0.096 0.129 0.027 0.062 0.045
Internet 0.462 6.352 5.502 0.492 1.017 0.800

Table 1: Execution times in seconds of the algorithms for the test graphs. For the Iterative Parallel (It.Par.) and
Scheduled Reverse (Sched.Rev.) algorithms the results obtained with 1 (1T) and 16 threads (16T) are shown.

CONCLUSION

We showed that the Greedy-LU algorithm performs best regarding the balancing of the color popu-
lations, but can be nearly 14 times slower than the unbalanced Greedy algorithm. Adding execution
time to the consideration, the Iterative Parallel algorithm produces the best results regarding both,
parallel scalability and coloring quality.

ACKNOWLEDGMENT
The financial support by the Austrian Federal Ministry of Science, Research and Economy and the
National Foundation for Research, Technology and Development is gratefully acknowledged as is
the support by the TU Wien IP project ”Parallel 3D Mesh Generation for Bio-Micro- & Nanoelec-
tromechanical Systems”. The computational results presented have been achieved using the Vienna
Scientific Cluster (VSC).

REFERENCES

[1] M. Fratarcangeli et al., ACM Trans. Graph., 35(6), 214:1-214:9, 2016.
[2] L. Gnam et al., Proc. of IMR, 2017.
[3] H. Lu et al., IEEE Trans. Par. Dist. Sys., 28(5), 1240-1256, 2017.
[4] Ü. Çatalyürek et al., Par. Comp., 38(10), 576-94, 2012.
[5] T.A. Davis et al., ACM Trans. Math. Softw., 38(1), 1:1-1:25, 2011.
[6] http://vsc.ac.at


